Copied to
clipboard

?

G = C10×C22.D4order 320 = 26·5

Direct product of C10 and C22.D4

direct product, metabelian, nilpotent (class 2), monomial, 2-elementary

Aliases: C10×C22.D4, (C23×C4)⋊4C10, (C23×C20)⋊7C2, C23.49(C5×D4), C24.32(C2×C10), C22.61(D4×C10), (C2×C20).657C23, (C2×C10).344C24, (C22×C20)⋊59C22, (C22×D4).10C10, C10.183(C22×D4), (C22×C10).171D4, C23.5(C22×C10), (D4×C10).316C22, (C23×C10).92C22, C22.18(C23×C10), (C22×C10).259C23, C2.7(D4×C2×C10), (C10×C4⋊C4)⋊43C2, (C2×C4⋊C4)⋊16C10, C4⋊C411(C2×C10), (D4×C2×C10).23C2, C2.7(C10×C4○D4), (C5×C4⋊C4)⋊67C22, (C2×C22⋊C4)⋊10C10, (C10×C22⋊C4)⋊30C2, C22⋊C412(C2×C10), (C22×C4)⋊17(C2×C10), (C2×D4).61(C2×C10), C10.226(C2×C4○D4), (C2×C10).415(C2×D4), C22.31(C5×C4○D4), (C5×C22⋊C4)⋊66C22, (C2×C4).13(C22×C10), (C2×C10).231(C4○D4), SmallGroup(320,1526)

Series: Derived Chief Lower central Upper central

C1C22 — C10×C22.D4
C1C2C22C2×C10C22×C10D4×C10C5×C22.D4 — C10×C22.D4
C1C22 — C10×C22.D4
C1C22×C10 — C10×C22.D4

Subgroups: 530 in 342 conjugacy classes, 178 normal (22 characteristic)
C1, C2, C2 [×6], C2 [×6], C4 [×10], C22, C22 [×10], C22 [×22], C5, C2×C4 [×10], C2×C4 [×18], D4 [×8], C23, C23 [×8], C23 [×10], C10, C10 [×6], C10 [×6], C22⋊C4 [×12], C4⋊C4 [×8], C22×C4, C22×C4 [×8], C22×C4 [×4], C2×D4 [×4], C2×D4 [×4], C24 [×2], C20 [×10], C2×C10, C2×C10 [×10], C2×C10 [×22], C2×C22⋊C4, C2×C22⋊C4 [×2], C2×C4⋊C4 [×2], C22.D4 [×8], C23×C4, C22×D4, C2×C20 [×10], C2×C20 [×18], C5×D4 [×8], C22×C10, C22×C10 [×8], C22×C10 [×10], C2×C22.D4, C5×C22⋊C4 [×12], C5×C4⋊C4 [×8], C22×C20, C22×C20 [×8], C22×C20 [×4], D4×C10 [×4], D4×C10 [×4], C23×C10 [×2], C10×C22⋊C4, C10×C22⋊C4 [×2], C10×C4⋊C4 [×2], C5×C22.D4 [×8], C23×C20, D4×C2×C10, C10×C22.D4

Quotients:
C1, C2 [×15], C22 [×35], C5, D4 [×4], C23 [×15], C10 [×15], C2×D4 [×6], C4○D4 [×4], C24, C2×C10 [×35], C22.D4 [×4], C22×D4, C2×C4○D4 [×2], C5×D4 [×4], C22×C10 [×15], C2×C22.D4, D4×C10 [×6], C5×C4○D4 [×4], C23×C10, C5×C22.D4 [×4], D4×C2×C10, C10×C4○D4 [×2], C10×C22.D4

Generators and relations
 G = < a,b,c,d,e | a10=b2=c2=d4=e2=1, ab=ba, ac=ca, ad=da, ae=ea, dbd-1=ebe=bc=cb, cd=dc, ce=ec, ede=cd-1 >

Smallest permutation representation
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 131)(2 132)(3 133)(4 134)(5 135)(6 136)(7 137)(8 138)(9 139)(10 140)(11 88)(12 89)(13 90)(14 81)(15 82)(16 83)(17 84)(18 85)(19 86)(20 87)(21 74)(22 75)(23 76)(24 77)(25 78)(26 79)(27 80)(28 71)(29 72)(30 73)(31 97)(32 98)(33 99)(34 100)(35 91)(36 92)(37 93)(38 94)(39 95)(40 96)(41 144)(42 145)(43 146)(44 147)(45 148)(46 149)(47 150)(48 141)(49 142)(50 143)(51 128)(52 129)(53 130)(54 121)(55 122)(56 123)(57 124)(58 125)(59 126)(60 127)(61 114)(62 115)(63 116)(64 117)(65 118)(66 119)(67 120)(68 111)(69 112)(70 113)(101 154)(102 155)(103 156)(104 157)(105 158)(106 159)(107 160)(108 151)(109 152)(110 153)
(1 56)(2 57)(3 58)(4 59)(5 60)(6 51)(7 52)(8 53)(9 54)(10 55)(11 40)(12 31)(13 32)(14 33)(15 34)(16 35)(17 36)(18 37)(19 38)(20 39)(21 159)(22 160)(23 151)(24 152)(25 153)(26 154)(27 155)(28 156)(29 157)(30 158)(41 69)(42 70)(43 61)(44 62)(45 63)(46 64)(47 65)(48 66)(49 67)(50 68)(71 103)(72 104)(73 105)(74 106)(75 107)(76 108)(77 109)(78 110)(79 101)(80 102)(81 99)(82 100)(83 91)(84 92)(85 93)(86 94)(87 95)(88 96)(89 97)(90 98)(111 143)(112 144)(113 145)(114 146)(115 147)(116 148)(117 149)(118 150)(119 141)(120 142)(121 139)(122 140)(123 131)(124 132)(125 133)(126 134)(127 135)(128 136)(129 137)(130 138)
(1 96 66 74)(2 97 67 75)(3 98 68 76)(4 99 69 77)(5 100 70 78)(6 91 61 79)(7 92 62 80)(8 93 63 71)(9 94 64 72)(10 95 65 73)(11 119 159 131)(12 120 160 132)(13 111 151 133)(14 112 152 134)(15 113 153 135)(16 114 154 136)(17 115 155 137)(18 116 156 138)(19 117 157 139)(20 118 158 140)(21 123 40 141)(22 124 31 142)(23 125 32 143)(24 126 33 144)(25 127 34 145)(26 128 35 146)(27 129 36 147)(28 130 37 148)(29 121 38 149)(30 122 39 150)(41 109 59 81)(42 110 60 82)(43 101 51 83)(44 102 52 84)(45 103 53 85)(46 104 54 86)(47 105 55 87)(48 106 56 88)(49 107 57 89)(50 108 58 90)
(1 61)(2 62)(3 63)(4 64)(5 65)(6 66)(7 67)(8 68)(9 69)(10 70)(11 16)(12 17)(13 18)(14 19)(15 20)(21 26)(22 27)(23 28)(24 29)(25 30)(31 36)(32 37)(33 38)(34 39)(35 40)(41 54)(42 55)(43 56)(44 57)(45 58)(46 59)(47 60)(48 51)(49 52)(50 53)(71 108)(72 109)(73 110)(74 101)(75 102)(76 103)(77 104)(78 105)(79 106)(80 107)(81 94)(82 95)(83 96)(84 97)(85 98)(86 99)(87 100)(88 91)(89 92)(90 93)(111 130)(112 121)(113 122)(114 123)(115 124)(116 125)(117 126)(118 127)(119 128)(120 129)(131 146)(132 147)(133 148)(134 149)(135 150)(136 141)(137 142)(138 143)(139 144)(140 145)(151 156)(152 157)(153 158)(154 159)(155 160)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,131)(2,132)(3,133)(4,134)(5,135)(6,136)(7,137)(8,138)(9,139)(10,140)(11,88)(12,89)(13,90)(14,81)(15,82)(16,83)(17,84)(18,85)(19,86)(20,87)(21,74)(22,75)(23,76)(24,77)(25,78)(26,79)(27,80)(28,71)(29,72)(30,73)(31,97)(32,98)(33,99)(34,100)(35,91)(36,92)(37,93)(38,94)(39,95)(40,96)(41,144)(42,145)(43,146)(44,147)(45,148)(46,149)(47,150)(48,141)(49,142)(50,143)(51,128)(52,129)(53,130)(54,121)(55,122)(56,123)(57,124)(58,125)(59,126)(60,127)(61,114)(62,115)(63,116)(64,117)(65,118)(66,119)(67,120)(68,111)(69,112)(70,113)(101,154)(102,155)(103,156)(104,157)(105,158)(106,159)(107,160)(108,151)(109,152)(110,153), (1,56)(2,57)(3,58)(4,59)(5,60)(6,51)(7,52)(8,53)(9,54)(10,55)(11,40)(12,31)(13,32)(14,33)(15,34)(16,35)(17,36)(18,37)(19,38)(20,39)(21,159)(22,160)(23,151)(24,152)(25,153)(26,154)(27,155)(28,156)(29,157)(30,158)(41,69)(42,70)(43,61)(44,62)(45,63)(46,64)(47,65)(48,66)(49,67)(50,68)(71,103)(72,104)(73,105)(74,106)(75,107)(76,108)(77,109)(78,110)(79,101)(80,102)(81,99)(82,100)(83,91)(84,92)(85,93)(86,94)(87,95)(88,96)(89,97)(90,98)(111,143)(112,144)(113,145)(114,146)(115,147)(116,148)(117,149)(118,150)(119,141)(120,142)(121,139)(122,140)(123,131)(124,132)(125,133)(126,134)(127,135)(128,136)(129,137)(130,138), (1,96,66,74)(2,97,67,75)(3,98,68,76)(4,99,69,77)(5,100,70,78)(6,91,61,79)(7,92,62,80)(8,93,63,71)(9,94,64,72)(10,95,65,73)(11,119,159,131)(12,120,160,132)(13,111,151,133)(14,112,152,134)(15,113,153,135)(16,114,154,136)(17,115,155,137)(18,116,156,138)(19,117,157,139)(20,118,158,140)(21,123,40,141)(22,124,31,142)(23,125,32,143)(24,126,33,144)(25,127,34,145)(26,128,35,146)(27,129,36,147)(28,130,37,148)(29,121,38,149)(30,122,39,150)(41,109,59,81)(42,110,60,82)(43,101,51,83)(44,102,52,84)(45,103,53,85)(46,104,54,86)(47,105,55,87)(48,106,56,88)(49,107,57,89)(50,108,58,90), (1,61)(2,62)(3,63)(4,64)(5,65)(6,66)(7,67)(8,68)(9,69)(10,70)(11,16)(12,17)(13,18)(14,19)(15,20)(21,26)(22,27)(23,28)(24,29)(25,30)(31,36)(32,37)(33,38)(34,39)(35,40)(41,54)(42,55)(43,56)(44,57)(45,58)(46,59)(47,60)(48,51)(49,52)(50,53)(71,108)(72,109)(73,110)(74,101)(75,102)(76,103)(77,104)(78,105)(79,106)(80,107)(81,94)(82,95)(83,96)(84,97)(85,98)(86,99)(87,100)(88,91)(89,92)(90,93)(111,130)(112,121)(113,122)(114,123)(115,124)(116,125)(117,126)(118,127)(119,128)(120,129)(131,146)(132,147)(133,148)(134,149)(135,150)(136,141)(137,142)(138,143)(139,144)(140,145)(151,156)(152,157)(153,158)(154,159)(155,160)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,131)(2,132)(3,133)(4,134)(5,135)(6,136)(7,137)(8,138)(9,139)(10,140)(11,88)(12,89)(13,90)(14,81)(15,82)(16,83)(17,84)(18,85)(19,86)(20,87)(21,74)(22,75)(23,76)(24,77)(25,78)(26,79)(27,80)(28,71)(29,72)(30,73)(31,97)(32,98)(33,99)(34,100)(35,91)(36,92)(37,93)(38,94)(39,95)(40,96)(41,144)(42,145)(43,146)(44,147)(45,148)(46,149)(47,150)(48,141)(49,142)(50,143)(51,128)(52,129)(53,130)(54,121)(55,122)(56,123)(57,124)(58,125)(59,126)(60,127)(61,114)(62,115)(63,116)(64,117)(65,118)(66,119)(67,120)(68,111)(69,112)(70,113)(101,154)(102,155)(103,156)(104,157)(105,158)(106,159)(107,160)(108,151)(109,152)(110,153), (1,56)(2,57)(3,58)(4,59)(5,60)(6,51)(7,52)(8,53)(9,54)(10,55)(11,40)(12,31)(13,32)(14,33)(15,34)(16,35)(17,36)(18,37)(19,38)(20,39)(21,159)(22,160)(23,151)(24,152)(25,153)(26,154)(27,155)(28,156)(29,157)(30,158)(41,69)(42,70)(43,61)(44,62)(45,63)(46,64)(47,65)(48,66)(49,67)(50,68)(71,103)(72,104)(73,105)(74,106)(75,107)(76,108)(77,109)(78,110)(79,101)(80,102)(81,99)(82,100)(83,91)(84,92)(85,93)(86,94)(87,95)(88,96)(89,97)(90,98)(111,143)(112,144)(113,145)(114,146)(115,147)(116,148)(117,149)(118,150)(119,141)(120,142)(121,139)(122,140)(123,131)(124,132)(125,133)(126,134)(127,135)(128,136)(129,137)(130,138), (1,96,66,74)(2,97,67,75)(3,98,68,76)(4,99,69,77)(5,100,70,78)(6,91,61,79)(7,92,62,80)(8,93,63,71)(9,94,64,72)(10,95,65,73)(11,119,159,131)(12,120,160,132)(13,111,151,133)(14,112,152,134)(15,113,153,135)(16,114,154,136)(17,115,155,137)(18,116,156,138)(19,117,157,139)(20,118,158,140)(21,123,40,141)(22,124,31,142)(23,125,32,143)(24,126,33,144)(25,127,34,145)(26,128,35,146)(27,129,36,147)(28,130,37,148)(29,121,38,149)(30,122,39,150)(41,109,59,81)(42,110,60,82)(43,101,51,83)(44,102,52,84)(45,103,53,85)(46,104,54,86)(47,105,55,87)(48,106,56,88)(49,107,57,89)(50,108,58,90), (1,61)(2,62)(3,63)(4,64)(5,65)(6,66)(7,67)(8,68)(9,69)(10,70)(11,16)(12,17)(13,18)(14,19)(15,20)(21,26)(22,27)(23,28)(24,29)(25,30)(31,36)(32,37)(33,38)(34,39)(35,40)(41,54)(42,55)(43,56)(44,57)(45,58)(46,59)(47,60)(48,51)(49,52)(50,53)(71,108)(72,109)(73,110)(74,101)(75,102)(76,103)(77,104)(78,105)(79,106)(80,107)(81,94)(82,95)(83,96)(84,97)(85,98)(86,99)(87,100)(88,91)(89,92)(90,93)(111,130)(112,121)(113,122)(114,123)(115,124)(116,125)(117,126)(118,127)(119,128)(120,129)(131,146)(132,147)(133,148)(134,149)(135,150)(136,141)(137,142)(138,143)(139,144)(140,145)(151,156)(152,157)(153,158)(154,159)(155,160) );

G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,131),(2,132),(3,133),(4,134),(5,135),(6,136),(7,137),(8,138),(9,139),(10,140),(11,88),(12,89),(13,90),(14,81),(15,82),(16,83),(17,84),(18,85),(19,86),(20,87),(21,74),(22,75),(23,76),(24,77),(25,78),(26,79),(27,80),(28,71),(29,72),(30,73),(31,97),(32,98),(33,99),(34,100),(35,91),(36,92),(37,93),(38,94),(39,95),(40,96),(41,144),(42,145),(43,146),(44,147),(45,148),(46,149),(47,150),(48,141),(49,142),(50,143),(51,128),(52,129),(53,130),(54,121),(55,122),(56,123),(57,124),(58,125),(59,126),(60,127),(61,114),(62,115),(63,116),(64,117),(65,118),(66,119),(67,120),(68,111),(69,112),(70,113),(101,154),(102,155),(103,156),(104,157),(105,158),(106,159),(107,160),(108,151),(109,152),(110,153)], [(1,56),(2,57),(3,58),(4,59),(5,60),(6,51),(7,52),(8,53),(9,54),(10,55),(11,40),(12,31),(13,32),(14,33),(15,34),(16,35),(17,36),(18,37),(19,38),(20,39),(21,159),(22,160),(23,151),(24,152),(25,153),(26,154),(27,155),(28,156),(29,157),(30,158),(41,69),(42,70),(43,61),(44,62),(45,63),(46,64),(47,65),(48,66),(49,67),(50,68),(71,103),(72,104),(73,105),(74,106),(75,107),(76,108),(77,109),(78,110),(79,101),(80,102),(81,99),(82,100),(83,91),(84,92),(85,93),(86,94),(87,95),(88,96),(89,97),(90,98),(111,143),(112,144),(113,145),(114,146),(115,147),(116,148),(117,149),(118,150),(119,141),(120,142),(121,139),(122,140),(123,131),(124,132),(125,133),(126,134),(127,135),(128,136),(129,137),(130,138)], [(1,96,66,74),(2,97,67,75),(3,98,68,76),(4,99,69,77),(5,100,70,78),(6,91,61,79),(7,92,62,80),(8,93,63,71),(9,94,64,72),(10,95,65,73),(11,119,159,131),(12,120,160,132),(13,111,151,133),(14,112,152,134),(15,113,153,135),(16,114,154,136),(17,115,155,137),(18,116,156,138),(19,117,157,139),(20,118,158,140),(21,123,40,141),(22,124,31,142),(23,125,32,143),(24,126,33,144),(25,127,34,145),(26,128,35,146),(27,129,36,147),(28,130,37,148),(29,121,38,149),(30,122,39,150),(41,109,59,81),(42,110,60,82),(43,101,51,83),(44,102,52,84),(45,103,53,85),(46,104,54,86),(47,105,55,87),(48,106,56,88),(49,107,57,89),(50,108,58,90)], [(1,61),(2,62),(3,63),(4,64),(5,65),(6,66),(7,67),(8,68),(9,69),(10,70),(11,16),(12,17),(13,18),(14,19),(15,20),(21,26),(22,27),(23,28),(24,29),(25,30),(31,36),(32,37),(33,38),(34,39),(35,40),(41,54),(42,55),(43,56),(44,57),(45,58),(46,59),(47,60),(48,51),(49,52),(50,53),(71,108),(72,109),(73,110),(74,101),(75,102),(76,103),(77,104),(78,105),(79,106),(80,107),(81,94),(82,95),(83,96),(84,97),(85,98),(86,99),(87,100),(88,91),(89,92),(90,93),(111,130),(112,121),(113,122),(114,123),(115,124),(116,125),(117,126),(118,127),(119,128),(120,129),(131,146),(132,147),(133,148),(134,149),(135,150),(136,141),(137,142),(138,143),(139,144),(140,145),(151,156),(152,157),(153,158),(154,159),(155,160)])

Matrix representation G ⊆ GL5(𝔽41)

400000
01000
00100
00040
00004
,
400000
00900
032000
00010
00001
,
10000
040000
004000
00010
00001
,
10000
004000
040000
000040
00010
,
10000
01000
004000
00010
000040

G:=sub<GL(5,GF(41))| [40,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,4,0,0,0,0,0,4],[40,0,0,0,0,0,0,32,0,0,0,9,0,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,0,40,0,0,0,40,0,0,0,0,0,0,0,1,0,0,0,40,0],[1,0,0,0,0,0,1,0,0,0,0,0,40,0,0,0,0,0,1,0,0,0,0,0,40] >;

140 conjugacy classes

class 1 2A···2G2H2I2J2K2L2M4A···4H4I···4N5A5B5C5D10A···10AB10AC···10AR10AS···10AZ20A···20AF20AG···20BD
order12···22222224···44···4555510···1010···1010···1020···2020···20
size11···12222442···24···411111···12···24···42···24···4

140 irreducible representations

dim1111111111112222
type+++++++
imageC1C2C2C2C2C2C5C10C10C10C10C10D4C4○D4C5×D4C5×C4○D4
kernelC10×C22.D4C10×C22⋊C4C10×C4⋊C4C5×C22.D4C23×C20D4×C2×C10C2×C22.D4C2×C22⋊C4C2×C4⋊C4C22.D4C23×C4C22×D4C22×C10C2×C10C23C22
# reps13281141283244481632

In GAP, Magma, Sage, TeX

C_{10}\times C_2^2.D_4
% in TeX

G:=Group("C10xC2^2.D4");
// GroupNames label

G:=SmallGroup(320,1526);
// by ID

G=gap.SmallGroup(320,1526);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-5,-2,-2,1149,3446,436]);
// Polycyclic

G:=Group<a,b,c,d,e|a^10=b^2=c^2=d^4=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,d*b*d^-1=e*b*e=b*c=c*b,c*d=d*c,c*e=e*c,e*d*e=c*d^-1>;
// generators/relations

׿
×
𝔽